Background

- The human epidermal growth factor receptor 2 (HER2, aka ERBB2) oncogene is overexpressed in approximately 25% of breast cancer tumors and is associated with a high rate of brain metastasis.
- Approximately half of HER2+ tumors are also estrogen receptor-positive.
- OP-1250 is a complete estrogen receptor antagonist (CERAN), which has been shown to effectively shrink ER+ breast cancer xenografts, including ER mutant models.
- While extensively characterized in ER+/HER2- breast cancer models, OP-1250 has not previously been tested in a HER2+ context.

OP-1250 reduces proliferation and degrades the estrogen receptor in combination with HER2 inhibitor tucatinib in ER+/HER2+ cells

- OP-1250 reduces proliferation in combination with HER2 inhibitor trastuzumab in ER+/HER2+ cell lines (Figure 3).
- OP-1250 treatment in the HCl-613 PDX model, which contains ESR1 Y537S mutation.

OP-1250 reduces xenograft growth in combination with HER2 inhibitors in cell line and PDX models of ER+/HER2+ breast cancer

- OP-1250 reduces xenograft growth in combination with HER2 inhibitor trastuzumab and tucatinib in breast cancer models, including ER mutant models (Figure 4).
- The addition of OP-1250 to HER2 inhibitors trastuzumab and tucatinib resulted in greater tumor shrinkage than capcitabine alone.

Conclusions

- OP-1250 inhibits estrogen receptor-driven proliferation and effectively degrades the estrogen receptor in multiple ER+/HER2+ cell lines.
- The addition of OP-1250 to HER2 inhibitors improved tumor growth inhibition in both ER+/HER2+ cell line-derived xenograft and patient-derived xenograft models.
- OP-1250 exhibits brain penetration and concentrates in tumors in an ER+/HER2+ xenograft.
- OP-1250 in combination with HER2 inhibitors trastuzumab and tucatinib inhibits ER+ xenograft growth at least as well as capcitabine.

These data provide a strong rationale to study OP-1250 in combination with HER2 targeted agents as a chemotherapy-free treatment for ER+/HER2+ breast cancer.

A clinical study evaluating the combination of OP-1250 and HER2 targeted agents is planned for 2022.

References

This presentation is the intellectual property of Oleveland Pharmaceuticals, Inc. Contact OlevelandOleveland.com for permission to reprint and/or distribute.

Figure 2. Proliferation assays of ER+/HER2+ cell lines treated for 7 days with 100 nM OP-1250, 10 μg/ml trastuzumab, or the combination in serum-free media supplemented with 500 μM estradiol. Proliferation is reduced with OP-1250 treatment alone and in combination with trastuzumab. * indicates adjusted p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001.

Figure 3. Xenograft studies of ER+/HER2+ cell line or patient-derived xenograft (PDX) treated with OP-1250 and HER2 inhibitors. A-C) BT-474 cell line implanted into the mammary fat pad of NSG mice tumor model (A) and representative H&E images (B). Tumor shrinkage occurred when OP-1250 was combined with dual HER2 targeted therapy. Pharmacokinetic analysis indicated 1250 levels in the cell line model. D) Combined OP-1250 and trastuzumab treatment inhibited xenograft growth in this model alone and with HER2 inhibitors tucatinib (D) and ado-trastuzumab emtansine (T-DM1) (E). **** indicates adjusted p-value < 0.0001.

Figure 4. Xenograft model of the ER+/HER2+ BT-474 cell line implanted into the mammary fat pad of NSG mice. The addition of OP-1250 to HER2 inhibitors trastuzumab and tucatinib resulted in greater tumor shrinkage than capcitabine alone.

This presentation is the intellectual property of Oleveland Pharmaceuticals, Inc. Contact OlevelandOleveland.com for permission to reprint and/or distribute.